Peer Reviewed Publications

Hanke et al., Nature Communications.

Abstract: SARS-CoV-2 enters host cells through an interaction between the spike glycoprotein and the angiotensin converting enzyme 2 (ACE2) receptor. Directly preventing this interaction presents an attractive possibility for suppressing SARS-CoV-2 replication. Here, we report the isolation and characterization of an alpaca-derived single domain antibody fragment, Ty1, that specifically targets the receptor binding domain (RBD) of the SARS-CoV-2 spike, directly preventing ACE2 engagement. Ty1 binds the RBD with high affinity, occluding ACE2. A cryo-electron microscopy structure of the bound complex at 2.9 Å resolution reveals that Ty1 binds to an epitope on the RBD accessible in both the ‘up’ and ‘down’ conformations, sterically hindering RBD-ACE2 binding. While fusion to an Fc domain renders Ty1 extremely potent, Ty1 neutralizes SARS-CoV-2 spike pseudovirus as a 12.8 kDa nanobody, which can be expressed in high quantities in bacteria, presenting opportunities for manufacturing at scale. Ty1 is therefore an excellent candidate as an intervention against COVID-19.

Volz et al., Nature.

Abstract: The SARS-CoV-2 lineage B.1.1.7, designated a Variant of Concern 202012/01 (VOC) by Public Health England, originated in the UK in late Summer to early Autumn 2020. Whole genome SARS-CoV-2 sequence data collected from community-based diagnostic testing shows an unprecedentedly rapid expansion of the B.1.1.7 lineage during Autumn 2020, suggesting a selective advantage. We find that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S-gene target failures (SGTF) in community-based diagnostic PCR testing. Analysis of trends in SGTF and non-SGTF case numbers in local areas across England shows that the VOC has higher transmissibility than non-VOC lineages, even if the VOC has a different latent period or generation time. The SGTF data indicate a transient shift in the age composition of reported cases, with a larger share of under 20 year olds among reported VOC than non-VOC cases. Time-varying reproduction numbers for the VOC and cocirculating lineages were estimated using SGTF and genomic data. The best supported models did not indicate a substantial difference in VOC transmissibility among different age groups. There is a consensus among all analyses that the VOC has a substantial transmission advantage with a 50% to 100% higher reproduction number.

Volz et al., Cell

Abstract: Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.

Custódio et al., Nature Communications.

Abstract: The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Therapeutic neutralizing antibodies constitute a key short-to-medium term approach to tackle COVID-19. However, traditional antibody production is hampered by long development times and costly production. Here, we report the rapid isolation and characterization of nanobodies from a synthetic library, known as sybodies (Sb), that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Several binders with low nanomolar affinities and efficient neutralization activity were identified of which Sb23 displayed high affinity and neutralized pseudovirus with an IC50 of 0.6 µg/ml. A cryo-EM structure of the spike bound to Sb23 showed that Sb23 binds competitively in the ACE2 binding site. Furthermore, the cryo-EM reconstruction revealed an unusual conformation of the spike where two RBDs are in the ‘up’ ACE2-binding conformation. The combined approach represents an alternative, fast workflow to select binders with neutralizing activity against newly emerging viruses.

Szurgot et al., Scientific Reports

Abstract: The outbreak of the SARS-CoV-2 virus and its rapid spread into a global pandemic made the urgent development of scalable vaccines to prevent coronavirus disease (COVID-19) a global health and economic imperative. Here, we characterized and compared the immunogenicity of two alphavirus-based DNA-launched self-replicating (DREP) vaccine candidates encoding either SARS-CoV-2 spike glycoprotein (DREP-S) or a spike ectodomain trimer stabilized in prefusion conformation (DREP-Secto). We observed that the two DREP constructs were immunogenic in mice inducing both binding and neutralizing antibodies as well as T cell responses. Interestingly, the DREP coding for the unmodified spike turned out to be more potent vaccine candidate, eliciting high titers of SARS-CoV-2 specific IgG antibodies that were able to efficiently neutralize pseudotyped virus after a single immunization. In addition, both DREP constructs were able to efficiently prime responses that could be boosted with a heterologous spike protein immunization. These data provide important novel insights into SARS-CoV-2 vaccine design using a rapid response DNA vaccine platform. Moreover, they encourage the use of mixed vaccine modalities as a strategy to combat SARS-CoV-2.

Wørzner et al., EBioMedicine

Abstract: Background: SARS-CoV-2 has caused a global pandemic, infecting millions of people. A safe, effective vaccine is urgently needed and remains a global health priority. Subunit vaccines are used successfully against other viruses when administered in the presence of an effective adjuvant.

Methods: We evaluated three different clinically tested adjuvant systems in combination with the SARS-CoV-2 pre-fusion stabilized (S-2P) spike protein using a one-dose regimen in mice.

Findings: Whilst spike protein alone was only weakly immunogenic, the addition of either Aluminum hydroxide, a squalene based oil-in-water emulsion system (SE) or a cationic liposome-based adjuvant significantly enhanced antibody responses against the spike receptor binding domain (RBD). Kinetics of antibody responses differed, with SE providing the most rapid response. Neutralizing antibodies developed after a single immunization in all adjuvanted groups with ID50 titers ranging from 86–4063. Spike-specific CD4 T helper responses were also elicited, comprising mainly of IFN-γ and IL-17 producing cells in the cationic liposome adjuvanted group, and more IL-5- and IL-10-secreting cells in the AH group.

Interpretation: These results demonstrate that adjuvanted spike protein subunit vaccine is a viable strategy for rapidly eliciting SARS-CoV-2 neutralizing antibodies and CD4 T cell responses of various qualities depending on the adjuvant used, which can be explored in further vaccine development against COVID-19.

Rudberg, et al., Nature Communications

Abstract: SARS-CoV-2 may pose an occupational health risk to healthcare workers. Here, we report the seroprevalence of SARS-CoV-2 antibodies, self-reported symptoms and occupational exposure to SARS-CoV-2 among healthcare workers at a large acute care hospital in Sweden. The seroprevalence of IgG antibodies against SARS-CoV-2 was 19.1% among the 2149 healthcare workers recruited between April 14th and May 8th 2020, which was higher than the reported regional seroprevalence during the same time period. Symptoms associated with seroprevalence were anosmia (odds ratio (OR) 28.4, 95% CI 20.6–39.5) and ageusia (OR 19.2, 95% CI 14.3–26.1). Seroprevalence was also associated with patient contact (OR 2.9, 95% CI 1.9–4.5) and covid-19 patient contact (OR 3.3, 95% CI 2.2–5.3). These findings imply an occupational risk for SARS-CoV-2 infection among healthcare workers. Continued measures are warranted to assure healthcare workers safety and reduce transmission from healthcare workers to patients and to the community.

Mandolesi, et al., Cell Reports Medicine

Abstract: The outbreak and spread of SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) is a current global health emergency, and effective prophylactic vaccines are needed urgently. The spike glycoprotein of SARS-CoV-2 mediates entry into host cells, and thus is the target of neutralizing antibodies. Here, we show that adjuvanted protein immunization with soluble SARS-CoV-2 spike trimers, stabilized in prefusion conformation, results in potent antibody responses in mice and rhesus macaques, with neutralizing antibody titers exceeding those typically measured in SARS-CoV-2 seropositive humans by more than one order of magnitude. Neutralizing antibody responses were observed after a single dose, with exceptionally high titers achieved after boosting. A follow-up to monitor the waning of the neutralizing antibody responses in rhesus macaques demonstrated durable responses that were maintained at high and stable levels at least 4 months after boosting. These data support the development of adjuvanted SARS-CoV-2 prefusion-stabilized spike protein subunit vaccines.

Castro Dopico, et al., Journal of Internal Medicine


Background. In Sweden, social restrictions to contain SARS-CoV-2 have primarily relied upon voluntary adherence to a set of recommendations. Strict lockdowns have not been enforced, potentially affecting viral dissemination. To understand the levels of past SARS-CoV-2 infection in the Stockholm population before the start of mass vaccinations, healthy blood donors and pregnant women (n = 5,100) were sampled at random between 14 March 2020 and 28 February 2021.

Methods. In this cross-sectional prospective study, otherwise-healthy blood donors (n = 2,600) and pregnant women (n = 2,500) were sampled for consecutive weeks (at four intervals) throughout the study period. Sera from all participants and a cohort of historical (negative) controls (n = 595) were screened for IgG responses against stabilized trimers of the SARS-CoV-2 spike (S) glycoprotein and the smaller receptor-binding domain (RBD). As a complement to standard analytical approaches, a probabilistic (cut-off independent) Bayesian framework that assigns likelihood of past infection was used to analyse data over time.

Setting. Healthy participant samples were randomly selected from their respective pools through Karolinska University Hospital. The study was carried out in accordance with Swedish Ethical Review Authority: registration number 2020–01807.

Participants. No participants were symptomatic at sampling, and blood donors were all over the age of 18. No additional metadata were available from the participants.

Results. Blood donors and pregnant women showed a similar seroprevalence. After a steep rise at the start of the pandemic, the seroprevalence trajectory increased steadily in approach to the winter second wave of infections, approaching 15% of all individuals surveyed by 13 December 2020. By the end of February 2021, 19% of the population tested seropositive. Notably, 96% of seropositive healthy donors screened (n = 56) developed neutralizing antibody responses at titres comparable to or higher than those observed in clinical trials of SARS-CoV-2 spike mRNA vaccination, supporting that mild infection engenders a competent B-cell response.

Conclusions. These data indicate that in the first year since the start of community transmission, seropositivity levels in metropolitan in Stockholm had reached approximately one in five persons, providing important baseline seroprevalence information prior to the start of vaccination..

Moliner-Morro et al., Biomolecules

Abstract: Multivalent antibody constructs have a broad range of clinical and biotechnological applications. Nanobodies are especially useful as components for multivalent constructs as they allow increased valency while maintaining a small molecule size. We here describe a novel, rapid method for the generation of bi- and multivalent nanobody constructs with oriented assembly by Cu-free strain promoted azide-alkyne click chemistry (SPAAC). We used sortase A for ligation of click chemistry functional groups site-specifically to the C-terminus of nanobodies before creating C-to-C-terminal nanobody fusions and 4-arm polyethylene glycol (PEG) tetrameric nanobody constructs. We demonstrated the viability of this approach by generating constructs with the SARS-CoV-2 neutralizing nanobody Ty1. We compared the ability of the different constructs to neutralize SARS-CoV-2 pseudotyped virus and infectious virus in neutralization assays. The generated dimers neutralized the virus similarly to a nanobody-Fc fusion variant, while a 4-arm PEG based tetrameric Ty1 construct dramatically enhanced neutralization of SARS-CoV-2, with an IC50 in the low picomolar range.

Ragonnet-Cronin et al., Nature Communications

Abstract: Unprecedented public health interventions including travel restrictions and national lockdowns have been implemented to stem the COVID-19 epidemic, but the effectiveness of non-pharmaceutical interventions is still debated. We carried out a phylogenetic analysis of more than 29,000 publicly available whole genome SARS-CoV-2 sequences from 57 locations to estimate the time that the epidemic originated in different places. These estimates were examined in relation to the dates of the most stringent interventions in each location as well as to the number of cumulative COVID-19 deaths and phylodynamic estimates of epidemic size. Here we report that the time elapsed between epidemic origin and maximum intervention is associated with different measures of epidemic severity and explains 11% of the variance in reported deaths one month after the most stringent intervention. Locations where strong non-pharmaceutical interventions were implemented earlier experienced much less severe COVID-19 morbidity and mortality during the period of study.